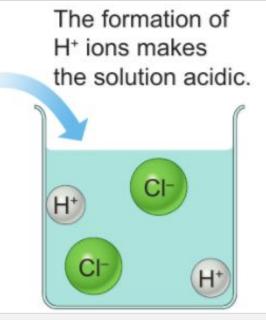


<u>Starter A</u>:

What do you recall about the reactions shown above? *Give as much detail as you can*.

Reactions with hydrogen.


Halogens react with metals, making metal halides.

 They also react with hydrogen, making hydrogen halides.
 hydrogen

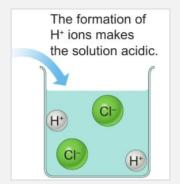
e.g., hydrogen + chlorine \longrightarrow chloride H₂(g) + Cl₂(g) \longrightarrow 2 HCl(g)

 Hydrogen chloride dissolves in water to form hydrochloric acid.

 $HCl(g) \rightarrow HCl(aq)$

Reactions with hydrogen.

- Describe the formation of hydrofluoric acid:
 - a) using word equations.
 - b) using balanced symbol equations.


hydrogen + fluorine \longrightarrow hydrogen fluoride

dissolves in water to form hydrofluoric acid.

 $H_{2}(g) + F_{2}(g) \longrightarrow 2 HF(g)$ $HF(q) \longrightarrow HF(aq)$

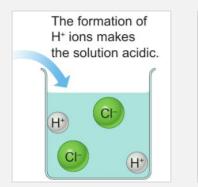
- Describe experiments and collect data to demonstrate the relative reactivities of halogens.
- •Use the reactivity of halogens to predict outcomes of displacement reactions.
- Recall that hydrogen reacts with halogens to make acidic gases.

1	2											3	4	5	6	7	
							н										He
Li	Be							ť				в	С	Ν	0	F	Ne
Na	Mg											AI	Si	Ρ	s	CI	Ar
к	Ca	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	τı	Pb	Bi	Po	At	Rn
Fr	Ra	Ac															19

Displacement reactions.

- •The order of reactivity of the halogens is: fluorine - most reactive.
 - chlorine bromine iodine - least reactive.
- •So what *should* happen in these:
- chlorine + sodium fluoride

chlorine + $\frac{\text{sodium}}{\text{bromide}} \longrightarrow \frac{\text{bromine}}{\text{bromine}} + \frac{\text{sodium}}{\text{chloride}}$


Displac	er	<u>nent reactio</u>	<u>ns.</u>	chlorine gas
•What wo	uld	happen in these	reactions?	POTASSIN LOBIDE potassium iodide
fluorine	+	potassium bromide	bromine	+ potassium fluoride
iodine	+	potassium —> bromide	no reacti	on
chlorine	+	potassium —> iodide	iodine +	potassium chloride
astatine	+	potassium chloride	no reacti	on

 Describe experiments and collect data to demonstrate the relative reactivities of halogens.

 Use the reactivity of halogens to predict outcomes of displacement reactions.

 Recall that hydrogen reacts with halogens to make acidic gases.

1	2											3	4	5	6	7	0
							н										He
Li	Be							ť				В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Ρ	s	CI	Ar
к	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ва	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	τı	Pb	Bi	Po	At	Rn
Fr	Ra	Ac						_		_					-	-	

Displacement experiments.

- •You will now perform a series of reactions.
- •You have several potassium halide solutions.
- •You will mix each potassium halide solution with different halogen solutions.
- Follow the method sheet carefully and record your results as you go.

Balanced extension.

Write balanced equations (with state symbols) for any successful reactions.

Challenge.

In your displacement reactions, which halogens are being oxidised and which are being reduced? Everyone must record observations for the displacement of halogens (C)

Observing Displacement reactions

Fill in this table to show where a reaction occurred:

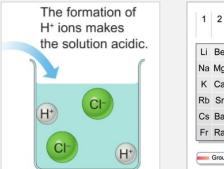
Substance	Su	bstance Add	led
in the test tube	Chlorine water	Bromine water	Iodine water
Potassium chloride		•	
Potassium bromide			
Potassium iodide			

You should write a word equation for the displacement reactions and reactions with sodium (B) Results

Substance	Su	bstance Add	led		
in the test tube	Chlorine water	Bromine water	Iodine water		
Potassium chloride		×	×		
Potassium bromide	KCI		×		
Potassium iodide	KCI	KBr			

How could we write this as a word equation? Use Mini-whiteboards

1. Why is this happening?


- If a MORE REACTIVE halogen is added to a halide compound it will <u>DISPLACE</u> (kick out) the halide in the compound.
- 2. Why did nothing happen when iodine water was added?
 - Iodine is not as reactive as the other two halogens.
 - This means it will be unable to displace the other halogens from their compounds.

• Describe experiments and collect data to demonstrate the relative reactivities of halogens.

•Use the reactivity of halogens to predict outcomes of displacement reactions.

 Recall that hydrogen reacts with halogens to make acidic gases.

1	2											3	4	5	6	7	0
							н										He
Li	Be							ť				В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Ρ	s	CI	Ar
к	Са	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	τı	Pb	Bi	Po	At	Rn
Fr	Ra	Ac															

Redox in displacement reactions.

In these reactions, which halogens become oxidised and which become reduced?

Chlorine forms Cl⁻ ions; it gains Bromide is oxidised; it an electron, so it is reduced. loses electrons.

 $Cl_2(aq) + 2 KBr(aq) \square Br_2(aq) + 2 KCl(aq)$

Bromine forms Br⁻ ions; it gains Iodide is oxidised; it an electron, so it is reduced.

 $\mathbf{Br}_{2}(aq) + \mathbf{2} \mathbf{KI}(aq) \quad \Box \quad \mathbf{I}_{2}(aq) + \mathbf{2}\mathbf{KBr}(aq)$

Extension/alternative/homework

Chlorine, bromine and iodine are in group 7 of the periodic table.

The order of reactivity of these three elements can be shown by carrying out displacement experiments.

You are provided with

potassium bromide solution

potassium chloride solution

potassium iodide solution

bromine solution

chlorine solution

iodine solution

Describe how these solutions could be used to carry out experiments to show the order of reactivity of bromine, chlorine and iodine, explaining how the results would show the order of reactivity. You may use equations if you wish.

Question Number	Indicative Content	Mark
*6(c)	 A description, comparison and explanation including some of the following points Order of reactivity: chlorine > bromine > iodine Experiment add (aqueous) chlorine to a solution of potassium bromide the solution turns orange/yellow bromine is produced Conclusion/Explanation and equation: (so) chlorine is more reactive than / displaces bromine Cl₂ + 2KBr → Br₂ + 2KCl / Cl₂ + 2Br' → Br₂ + 2Cl' Experiment add (aqueous) bromine to a solution of potassium iodide the solution turns brown iodine is produced Conclusion/Explanation and equation: (so) bromine is more reactive than / displaces iodine the solution turns brown iodine is produced 	

Experiment

- add (aqueous) chlorine to a solution of potassium iodide
- the solution turns brown
- iodine is produced

Conclusion/Explanation and equation:

(so) chlorine is more reactive than / displaces iodine

 $Cl_2 + 2KI \rightarrow I_2 + 2KCl / Cl_2 + 2I^- \rightarrow I_2 + 2Cl^-$

- Allow use of organic solvents to identify halogens
- Allow use of suggested reactions which do not produce a displacement reaction eg add (aqueous) bromine to a solution of a potassium chloride with suitable conclusion/explanation
- Allow use of table of suggested experiments

Level	0	No rewardable content
1	1 - 2	 a limited description of at least one experiment in which any halogen solution is added to any halide solution (not of the same halogen) OR describes order of reactivity as Cl > Br > I
		 the answer communicates ideas using simple language and uses limited scientific terminology
2	3 - 4	 spelling, punctuation and grammar are used with limited accuracy a simple description of at least two displacement experiments
		AND
		 EITHER at least one correct explanation/conclusion
		OR
		 at least one correct observation of a displacement reaction that works/balanced equation.
		 the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	<mark>5 - 6</mark>	 a detailed description of at least two displacement experiments
		AND
		 (a total of) at least two correct explanations/conclusions
		AND
		 at least one correct observation of a displacement reaction that works/ balanced equation
		 the answer communicates ideas clearly and coherently uses a

Halogens in-depth.

- •Write word equations for the reaction of a magnesium bromide solution with chlorine gas, and a magnesium iodide solution with a bromine solution.
- •Describe what you would <u>see</u> in each reaction (magnesium bromide solution is colourless).

Balanced equations.	<u>Challenge.</u>
Answer the questions	In your displacement
above using balanced	reactions, which halogens are
equations (with state	oxidised and which are
symbols).	reduced?

(remember that magnesium is in group 2)

Redox in displacement reactions.

chlorine	+	magnesium_ bromide	→	bromine	+	potassium chloride
Cl ₂ (g)	+	MgBr ₂ (aq)		Br₂ (aq)	+	MgCl₂ (aq)
		ns Cl ⁻ ions; it g , so it is reduce				oxidised; it ectrons.
bromine	+	magnesium_ iodide		iodine	+	magnesium bromide
Br₂ (aq)	+	MgI ₂ (aq)	0	I ₂ (aq)	+	MgBr ₂ (aq)
		ns Br ⁻ ions; it g , so it is reduce				oxidised; it ectrons.