OLEVEL P2 A80 PATTERNS AND SEQUENCES

1 Read these instructions.

- A Choose two **different** digits from 1, 2, 3, 4, 5, 6, 7, 8 and 9.
- B Write down the larger two-digit number which can be formed from the chosen digits.
- C Write down the smaller two-digit number which can be formed from the chosen digits.
- D Subtract the smaller number from the larger and note the result.

Example: A Choose 2 and 8.

- B Larger number is eighty-two (82).
- C Smaller number is twenty-eight (28).D Subtract: 82
 - Subtract: 82 -28 54Result = 54

(a)	The Foll	digits 3 and 7 are chosen. low the instructions to find the result.	[1]
(b)	Cho Foll	bose three other different pairs of digits. low the instructions to find the result in each case.	[1]
(c)	What	at do you notice about all these results?	[1]
(d)	The	digits <i>x</i> and <i>y</i> , where $x > y$, are chosen.	
	Fine	d expressions, in terms of x and y, for the value of	
	(i)	the larger number,	[1]
	(ii)	the result.	[2]
		© UCLES 2005	4024/02/M/J/05

The diagrams above show the first four flowerbeds in a sequence. Each flowerbed contains two types of plant, pansies (+) and primroses (O).

The table shows the number of plants in the first three flowerbeds.

Flowerbed number (<i>n</i>)	1	2	3	4	5
Number of pansies	10	14	18		
Number of primroses	2	6	12		
Total number of plants	12	20	30		

(a)	Cop	y and complete the colu	mns for flowerbeds 4 and 5.	[2]						
(b)) Find an expression, in terms of <i>n</i> , for									
	(i) the number of pansies in flower bed n ,									
	(ii)	the number of primrose	es in flowerbed <i>n</i> .	[1]						
(c)	Her	ice show that the total nu	The amber of plants in flower bed n can be expressed in the form							
			(n+2)(n+3).	[2]						
(d)	I) Calculate the total number of plants in flowerbed 10.									
(e)	There are 306 plants in flowerbed <i>k</i> .									
	(i) Show that <i>k</i> satisfies the equation									
			$k^2 + 5k - 300 = 0.$	[2]						
	(ii)	Solve the equation	$k^2 + 5k - 300 = 0.$	[2]						
	(iii) Hence find the number of pansies in flowerbed <i>k</i> .									

© UCLES 2010 4024/22/M/J/10

3 (a) 1, 7, 13, 19, 25, ...

(i) Find an expression, in terms of *n*, for the *n*th term of this sequence.

(ii) Explain why 251 is not a term in this sequence.

(b) Here is another sequence.

5, 8, 13, 20, 29, ...

The *p*th term of this sequence is $p^2 + 4$.

Write down an expression, in terms of *p*, for the *p*th term of these sequences.

(i) -2, 1, 6, 13, 22, ...

(ii) 7, 12, 19, 28, 39, ...

(c) The diagrams below show the first three patterns in a sequence. The patterns are made from short diagonal lines.

(i) Draw Pattern 4 on the dotty grid below.

	•		•		•		•		•		•	
•		•		•		•		•		•		•
	•		•		•		•		•		•	
•		•		•		•		•		•		•
	•		•		•		•		•		•	
•		•		•		•		•		•		•
	•		•		•		•		•		•	
•		•		•		•		•		•		•
			•								•	
•	-		-	•					-	•	-	
-		-		-		-		-		-		-

(ii) Complete the table below for the number of short lines in Patterns 4 and 5.

Pattern	1	2	3	4	5
Number of short lines	4	10	18		

[2]

[1]

(iii) Find an expression, in terms of *t*, for the number of short lines in Pattern *t*.

© UCLES 2018

4024/21/M/J/18