

YOUR NOTES

#### **CONTENTS**

- 7.4.1 Alcohols
- 7.4.2 Reactions of Phenol
- 7.4.3 Acidity of Phenols

### 7.4.1 ALCOHOLS

### Reaction of Alcohols With Acyl Chlorides

- Acyl chlorides are reactive organic compounds with a -COCI functional group
- The carbonyl carbon is **electron-deficient** and has a **partial positive charge**
- It is therefore susceptible to nucleophilic attack
- The carbon-chlorine bond breaks and white fumes of hydrogen chloride, HCl are formed

#### Reaction with alcohols and phenols

- Acyl chlorides react with alcohols and phenols to form esters in a nucleophilic substitution reaction
- The -OH group acts as a **nucleophile** and attacks the carbonyl carbon to **substitute** the chlorine atom
- Forming esters using acyl chlorides is **more effective** compared to using carboxylic acids as:
  - Acyl chlorides are more **reactive** (so the ester is produced faster)
  - $\circ~$  Acyl chloride reactions go to completion (so more of the ester is produced)



# YOUR NOTES

#### Reaction with alcohols

• The reaction of acyl chlorides with alcohols is **vigorous** and white fumes of HCl gas are formed



Acyl chlorides react vigorously with alcohols to form esters



### YOUR NOTES

### Reaction with phenols

- For the reaction of acyl chlorides with phenols to occur, **heat** and a **base** are required
  - o The base is needed to deprotonate the phenol and form a **phenoxide ion**
  - The phenoxide ion is a better nucleophile than the original phenol molecule and will be able to attack the carbonyl carbon



Acyl chlorides react with phenols when heated and in the presence of a base to form esters



YOUR NOTES

A base is needed to form a phenoxide ion which is a better nucleophile than phenol; now, nucleophilic attack on the carbonyl carbon can more readily occur



## YOUR NOTES

### 7.4.2 REACTIONS OF PHENOL

#### Reactions of Phenol

- Phenols can undergo many types of reactions as both the **electron-rich benzene ring** and the **polar -OH** group can participate in chemical reactions
- Some of the reactions of phenols include:
  - With bases
  - With reactive metals
  - With diazonium salts
  - Nitration
  - o Bromination

### Reactions of the -OH group in phenols

- The -OH group in phenols has a **slightly acidic character**
- It can therefore act as an acid and take part in acid-base reactions

#### Reaction with bases

- Phenols are only slightly soluble in water due to the large non-polar benzene ring
- However, they do dissolve in alkaline solutions and undergo acid-base reactions with bases to form a soluble salt and water



Phenols are weak acids and undergo acid-base reactions in alkaline solutions



### YOUR NOTES

#### Reaction with reactive metals

- Molten phenols react vigorously with reactive metals such as sodium (Na)
- This is also an acid-base reaction
- Now, a soluble salt is formed and hydrogen gas is given off

$$2 \bigcirc \hspace{-0.2cm} - OH \hspace{0.2cm} + \hspace{0.2cm} Na \hspace{0.2cm} \longrightarrow \hspace{0.2cm} 2 \bigcirc \hspace{-0.2cm} - O^-Na^+ \hspace{0.2cm} + \hspace{0.2cm} H_2$$

$$\boxed{ PHENOL \hspace{0.2cm} SODIUM \hspace{0.2cm} PHENOXIDE \hspace{0.2cm} HYDROGEN }$$

Molten phenols react vigorously with reactive metals to form a soluble salt and hydrogen gas

#### Reaction with diazonium ions

- **Diazonium ions** are very reactive compounds containing an -N<sub>2</sub><sup>+</sup> group
- When phenols are dissolved in sodium hydroxide (NaOH), a solution of sodium phenoxide
  is obtained
- This solution is cooled in ice and cold diazonium ion is added to the sodium phenoxide
- After the reaction has occurred, a **yellow-orange** solution or precipitate of an **azo** compound is formed
- These are compounds in which two benzene rings are linked by a nitrogen bridge

Azo compounds are formed from the reaction of phenols with diazonium ions



## YOUR NOTES

### Reactions of the aromatic ring in phenols

- Phenols react more **readily** with **electrophiles** compared to benzene
- ullet This is because one of the lone pairs of electrons on the oxygen atom in -OH overlaps with the  $\pi$  bonding system
- This increases the electron density of the benzene ring making it more susceptible to electrophilic attack
- The -OH group in phenols is activating and directs incoming electrophiles to the 2, 4, and
   6 positions

#### **Nitration**

- Phenols can undergo electrophilic substitution reactions when reacted with dilute nitric acid (HNO<sub>3</sub>) at room temperature to give a mixture of 2-nitrophenol and 4-nitrophenol
  - When **concentrated HNO**<sub>3</sub> is used, the product will be 2,4,6-trinitrophenol instead
- A hydrogen atom in the benzene ring is **substituted** by a nitro (-NO<sub>2</sub>) group
- This is also known as the **nitration** of phenol

Phenols undergo nitration when reacted with dilute HNO, at room temperature



## YOUR NOTES

#### **Bromination**

- Phenols also undergo electrophilic substitution reactions when reacted with bromine water at room temperature
- Phenol **decolourises** the **orange** bromine solution to form a **white precipitate** of 2,4,6-tribromophenol
- This is also known as the **bromination** of phenol

Phenols undergo bromination when reacted with bromine water at room temperature



## YOUR NOTES

### 7.4.3 ACIDITY OF PHENOLS

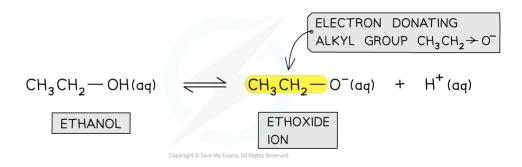
### Relative Acidities of Water, Phenol & Ethanol

- The  $pK_a$  is a measure of the acidity of a substance
- The values of water, phenol, and ethanol show that phenol is a **stronger** acid than ethanol and water

#### Relative acidity of ethanol, water & phenol table

| Acid    | Dissociation                                              | pKa (at 25 °C) |
|---------|-----------------------------------------------------------|----------------|
| Ethanol | $C_2H_5OH(aq) \iff C_2H_5O^-(aq) + H^+(aq)$               | 16             |
| Water   | $H_2O(l) \rightleftharpoons OH^-(aq) + H^+(aq)$           | 14             |
| Phenol  | $C_6H_5OH(aq) \rightleftharpoons C_6H_5O^-(aq) + H^+(aq)$ | 10             |

Copyright © Save My Exams. All Rights Reserved


 The order of acidity can be explained by looking at their conjugate bases which are formed from the dissociation of the compounds

### Delocalisation of charge density

- In the **phenoxide ion** (which is the conjugate base of phenol) the charge density on the oxygen atom is **spread out** over the entire ion
- As a result, the electrons on the oxygen atom are less available for bond formation with a proton (H<sup>+</sup> ion)
- The conjugate base of ethanol is the ethoxide ion
- The **ethyl** group in the ion is an **electron-donating** group that donates electron density to the oxygen atom
- As a result, the electron density on the oxygen atom is more readily available for bond formation with an H<sup>+</sup> ion

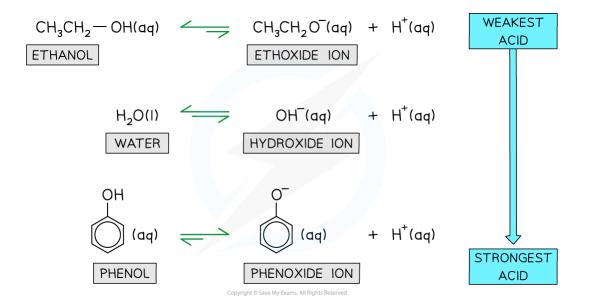


YOUR NOTES



The electron-donating alkyl group in the ethoxide ion concentrates charge density on the oxygen atom which can more easily bond an  $H^+$  ion

- The conjugate base of water is the hydroxide ion
- Since the charge density of the oxygen atom cannot become delocalised over a ring, the hydroxide ion more readily accepts an H<sup>+</sup> ion compared to the phenoxide ion
  - Water is, therefore, a **stronger base** compared to phenol
- However, as there are no **electron-donating** alkyl groups, less negative charge is concentrated on the oxygen atom which therefore less readily accepts an H<sup>+</sup> ion compared to the ethoxide ion
  - Water is, therefore, a weaker base compared to ethanol




The hydroxide ion lacks an aromatic ring and electron-donating alkyl groups so water is a stronger base than phenol but a weaker base than ethanol



YOUR NOTES

- Therefore, the position of equilibrium lies:
  - Further to the right-hand side favouring the dissociated phenoxide ions
  - Further to the left-hand side favouring the undissociated ethoxide and hydroxide ions



Relative equilibrium positions for the dissociation of ethanol, water, and phenol