Magnetic Materials

- > A magnetic material is a material that experiences a force when placed in a magnetic field
- > Although all magnetic materials are metallic, but not all metals are magnetic

> Common magnetic materials include:

- o Iron
- Steel (an alloy of iron)
- o Nickel
- Cobalt

> Common non-magnetic materials:

- Copper
- Aluminum
- o Brass

<u>Soft Magnetic materials (e.g. Iron)</u>		Hard Magnetic materials (e.g. Steel)	
>	Are easy to magnetize	A	Are hard to magnetize
\checkmark	Easily lose their magnetism or easily demagnetize	A	Do not easily lose their magnetism or hard to demagnetize
	Electromagnets are made out of magnetically soft materials, as we want them to be able to easily gain and lose their magnetism	A	Permanent magnets are made out of magnetically hard materials, as we don't want them to lose their magnetism

Induced Magnetism

- > When a magnetic material is placed in a magnetic field, the material can temporarily become magnetized:
 - One end of the material will become a north pole
 - $_{\circ}$ $\,$ $\,$ The other end will become a south pole
- > This process is known as **magnetic induction**

Methods of Magnetization:

- Stroking with a magnet
- Using a direct current (d.c.) in a coil
- Hitting with a hammer in a magnetic field

Methods of Demagnetisation

- Magnets can be demagnetised by using one of the following methods:
 - Hit the material with a hammer (when it is not in a magnetic field)
 - Heat the material (until it begins to glow) and then slowly let it cool
 - Place the material **in a coil containing alternating current (a.c.)** and then slowly withdraw the material (with the a.c. power source still attached to the coil)

Solenoids can be used to magnetise and demagnetise magnetic materials (p. 210); dropping or heating a magnet also causes demagnetisation. Hammering a magnetic material in a magnetic field causes magnetisation but in the absence of a field it causes demagnetisation. 'Stroking' a magnetic material several times in the same direction with one pole of a magnet will also cause it to become magnetised.

Magnetic Fields

- The space surrounding a magnet where it produces a magnetic force is called a magnetic field.
- Magnetic field lines or Lines of Force are a useful way of helping us to picture that field: Its strength and its direction
- > Magnetic field lines obey a couple of rules:
 - They always go from north to south
 - They never touch or cross each other

Plotting a Magnetic Field / lines of force:

- Using Iron Filings
- Plotting Compass method