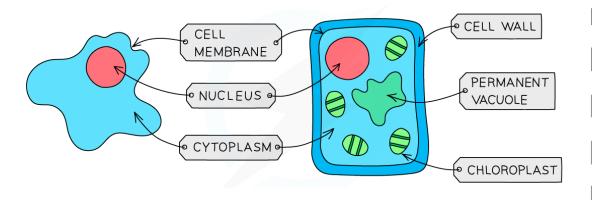


2 ORGANISATION OF THE ORGANISM

CONTENTS:

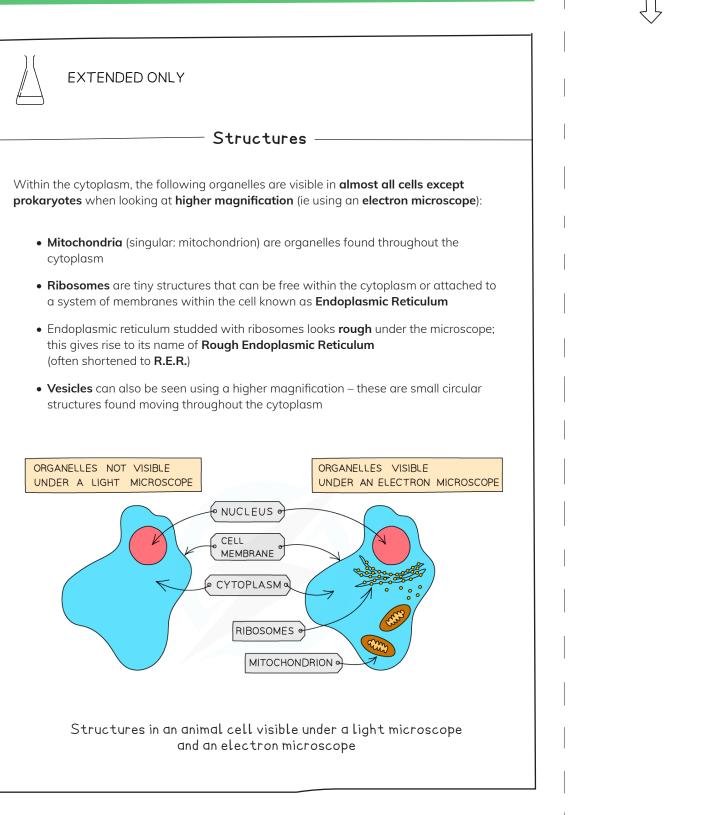

- 2.1 CELL STRUCTURE & ORGANISATION 2.2 SPECIALISED CELLS
- 2.3 LEVELS OF ORGANISATION
- 2.4 SIZE OF SPECIMENS

VIEW EXAM QUESTIONS

2.1 CELL STRUCTURE & ORGANISATION

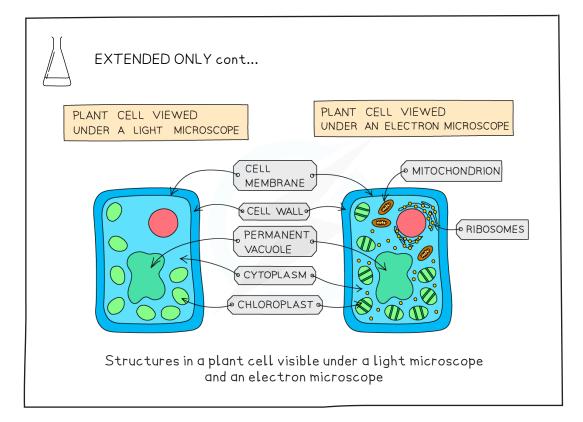
Structures: Basics

- Cytoplasm is found inside the cell and contains all the other cell structures
- The large **nucleus** is surrounded by a nuclear membrane to separate it from the cytoplasm
- The **cell membrane** surrounds the cell
- The **cell wall** is made of cellulose and surrounds the cell membrane in plant cells
- **Chloroplasts** are organelles found in the cytoplasm that are packed with the pigment **chlorophyll** and so are green in colour
- Vacuoles are large vesicles that take up a large part of the interior of plant cells



An animal and plant cell as seen under a light microscope

2 ORGANISATION OF THE ORGANISM


2.1 CELL STRUCTURE & ORGANISATION cont...

2.1 CELL STRUCTURE & ORGANISATION cont...

YOUR NOTES

Functions: Basics -

STRUCTURE	FUNCTION
NUCLEUS	 CONTAINS GENETIC MATERIAL IN CHROMOSOMES WHICH CONTROL HOW CELLS GROW AND WORK CONTROLS CELL DIVISION
CYTOPLASM - SUPPORTS CELL STRUCTURES - SITE OF MANY CHEMICAL REACTIONS - CONTAINS WATER AND MANY SOLUTES	
CELL MEMBRANE	- HOLDS THE CELL TOGETHER - CONTROLS SUBSTANCES ENTERING AND LEAVING THE CELL
CELL WALL	- GIVES THE CELL EXTRA SUPPORT AND DEFINES ITS SHAPE
CHLOROPLASTS	 SITE OF PHOTOSYNTHESIS, PROVIDING FOOD FOR PLANTS THE CHLOROPHYLL PIGMENTS ABSORB LIGHT ENERGY NEEDED FOR THE REACTION TO OCCUR
VACUOLE	 CONTAINS CELL SAP USED FOR STORAGE OF CERTAIN MATERIALS ALSO HELPS SUPPORT THE SHAPE OF THE CELL

2 ORGANISATION OF THE ORGANISM

2.1 CELL STRUCTURE & ORGANISATION cont...

EXTENDED ONLY	- Functions
STRUCTURE	FUNCTION
MITOCHONDRIA	 SITE OF AEROBIC RESPIRATION, PROVIDING ENERGY FOR THE CELL CELLS WITH HIGH RATES OF METABOLISM (CARRYING OUT MANY DIFFERENT CELL REACTIONS) WILL HAVE SIGNIFICANTLY HIGHER NUMBERS OF MITOCHONDRIA THAN CELLS WITH LOWER NUMBERS OF REACTIONS TAKING PLACE IN THEM
RIBOSOMES	- SITE OF PROTEIN PRODUCTION IN PROTEIN SYNTHESIS
VESICLES	– USED TO SAFELY TRANSPORT SUBSTANCES FROM ONE PART OF THE CELL TO ANOTHER

2.2 SPECIALISED CELLS

Adaptations of Specialised Cells -

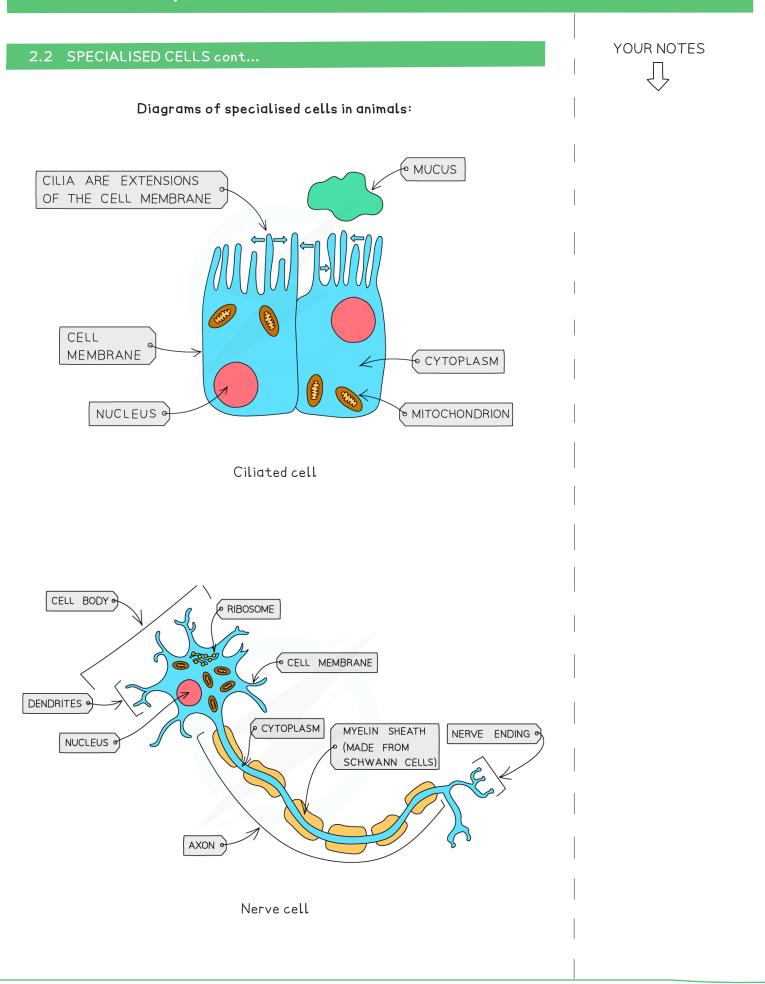
- Specialised cells are those which have **developed certain characteristics** in order to **perform particular functions**. These differences are controlled by genes in the nucleus
- Cells specialise by undergoing **differentiation**: this is a process by which cells develop the structure and characteristics needed to be able to carry out their functions

2.2 SPECIALISED CELLS cont...

-

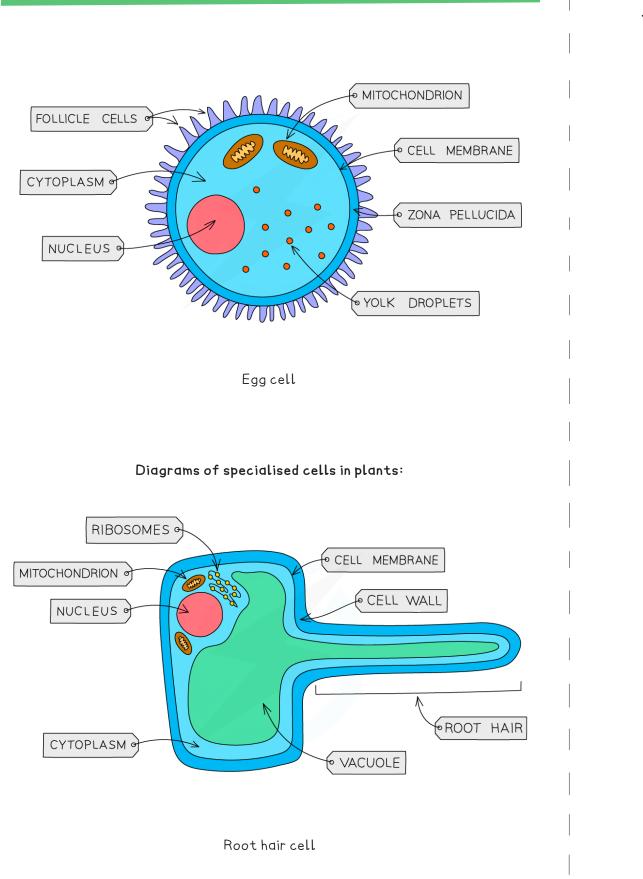
Examples of specialised cells in animals:

CELL	FUNCTION	ADAPTATIONS	
CILIATED CELL	MOVEMENT OF MUCUS IN THE TRACHEA AND BRONCHI	– EXTENSIONS OF THE CYTOPLASM AT THE SURFACE OF THE CELL FORM HAIR–LIKE STRUCTURES CALLED CILIA WHICH BEAT TO MOVE MUCUS AND TRAPPED PARTICLES UP TO THE THROAT	
NER VE CELL	CONDUCTION OF IMPULSES	 LONG SO THAT NERVES CAN RUN TO AND FROM DIFFERENT PARTS OF THE BODY TO THE CENTRAL NERVOUS SYSTEM THE CELL HAS EXTENSIONS AND BRANCHES, SO THAT IT CAN COMMUNICATE WITH OTHER NERVE CELLS, MUSCLES AND GLANDS THE AXON (EXTENSION OF CYTOPLASM AWAY FROM THE CELL BODY) IS COVERED WITH A FATTY SHEATH, WHICH INSULATES THE NERVE CELL AND SPEEDS UP THE NERVE IMPULSE 	
RED BLOOD CELL	TRANSPORT OF OXYGEN	 BICONCAVE DISC SHAPE INCREASES SURFACE AREA FOR MORE EFFICIENT DIFFUSION OF OXYGEN CONTAINS HAEMOGLOBIN WHICH JOINS WITH OXYGEN TO TRANSPORT IT CONTAINS NO NUCLEUS TO INCREASE AMOUNT OF SPACE AVAILABLE FOR HAEMOGLOBIN INSIDE CELL 	
SPERM CELL	REPRODUCTION	 THE HEAD CONTAINS THE GENETIC MATERIAL FOR FERTILISATION IN A HAPLOID NUCLEUS (CONTAINING HALF THE NORMAL NUMBER OF CHROMOSOMES) THE ACROSOME IN THE HEAD CONTAINS DIGESTIVE ENZYMES SO THAT A SPERM CAN PENETRATE AN EGG THE MID-PIECE IS PACKED WITH MITOCHONDRIA TO RELEASE ENERGY NEEDED TO SWIM AND FERTILISE THE EGG THE TAIL ENABLES THE SPERM TO SWIM 	
EGG CELL (OVUM)	REPRODUCTION	 CONTAINS A LOT OF CYTOPLASM WHICH HAS NUTRIENTS FOR THE GROWTH OF THE EARLY EMBRYO HAPLOID NUCLEUS CONTAINS THE GENETIC MATERIAL FOR FERTILISATION CELL MEMBRANE CHANGES AFTER FERTILISATION BY A SINGLE SPERM SO THAT NO MORE SPERM CAN ENTER 	


2.2 SPECIALISED CELLS cont...

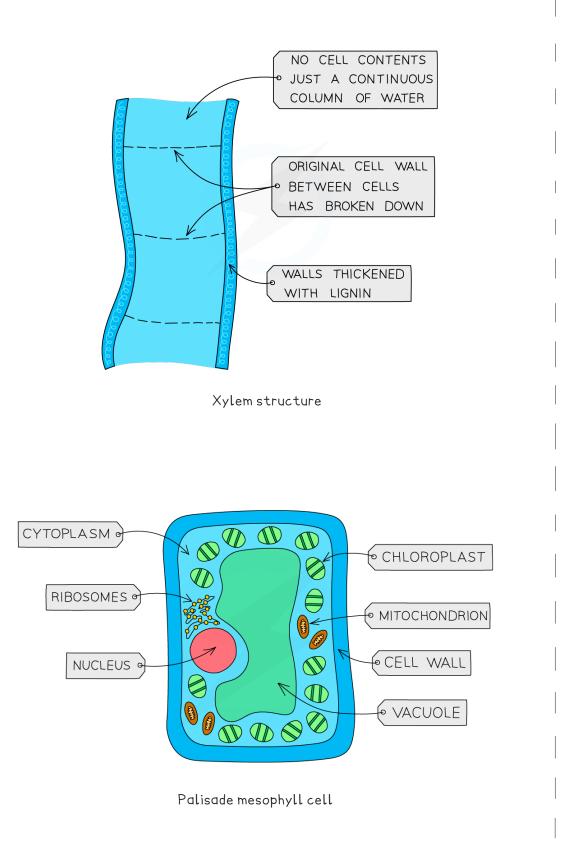
Examples of specialised cells in plants:

ROOT HAIR CELL	ABSORPTION OF WATER AND MINERAL IONS FROM SOIL	 ROOT HAIR INCREASES SURFACE AREA OF CELL TO ENSURE MAXIMUM ABSORPTION OF WATER AND MINERAL IONS WALLS ARE THIN TO ENSURE WATER MOVES THROUGH QUICKLY NO CHLOROPLASTS PRESENT
XYLEM VESSEL	CONDUCTION OF WATER THROUGH THE PLANT; SUPPORT OF THE PLANT	 NO TOP AND BOTTOM WALLS BET WEEN XYLEM VESSELS, SO THERE IS A CONTINUOUS COLUMN OF WATER RUNNING THROUGH THEM CELLS ARE DEAD WITHOUT ORGANELLES OR CYTOPLASM TO ALLOW FREE PASSAGE OF WATER THEIR WALLS BECOME THICKENED WITH A SUBSTANCE CALLED LIGNIN WHICH MEANS THEY ARE ABLE TO HELP SUPPORT THE PLANT
PALISADE MESOPHYLL CELL	PHOTOSYNTHESIS	 COLUMN SHAPED TO MAXIMIZE ABSORPTION OF SUNLIGHT AND FIT AS MANY IN A LAYER UNDER THE UPPER EPIDERMIS OF THE LEAF AS POSSIBLE CONTAINS MANY CHLOROPLASTS FOR MAXIMUM PHOTOSYNTHESIS

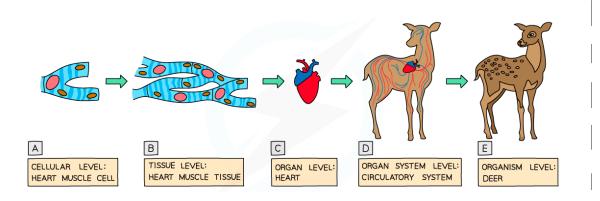


2 ORGANISATION OF THE ORGANISM YOUR NOTES 2.2 SPECIALISED CELLS cont... ٦L CYTOPLASM CONTAINING HAEMOGLOBIN CELL MEMBRANE BICONCAVE SHAPE DUE TO LACK OF NUCLEUS Red blood cell ACROSOME HEAD G CELL MEMBRANE MITOCHONDRIA NUCLEUS ● MID-PIECE CYTOPLASM TAIL / FLAGELLUM Sperm cell

2 ORGANISATION OF THE ORGANISM


2.2 SPECIALISED CELLS cont...

2.2 SPECIALISED CELLS cont...


YOUR NOTES

2.3 LEVELS OF ORGANISATION

Cells, Tissues, Organs & Organ Systems

LEVEL	DESCRIPTION
CELLS	BASIC FUNCTIONAL AND STRUCTURAL UNITS IN A LIVING ORGANISM
TISSUES	GROUPS OF CELLS OF SIMILAR STRUCTURE WORKING TOGETHER TO PERFORM THE SAME FUNCTION
ORGANS	MADE FROM DIFFERENT TISSUES WORKING TOGETHER TO PERFORM SPECIFIC FUNCTIONS
ORGAN SYSTEMS	GROUPS OF ORGANS WITH RELATED FUNCTIONS, WORKING TOGETHER TO PERFORM BODY FUNCTIONS

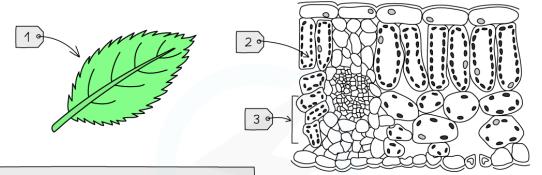
Levels of organisation

Most incorrect answers here come from not being able to identify a tissue, so it's worth making sure you understand and remember that **tissues are always made up of only one type of cell**.

2.3 LEVELS OF ORGANISATION cont...

6

ORGAN SYSTEM	ORGANS	TISSUE EXAMPLES
SHOOT SYSTEM	LEAF, STEM, FLOWER, FRUIT	– EPIDERMIS MESOPHYLL – XYLEM – PHLOEM
ROOT SYSTEM	ROOT, TUBER	- XYLEM - PHLOEM - GROUND TISSUE
DIGESTIVE SYSTEM	OESOPHAGUS, STOMACH, SMALL INTESTINE, LARGE INTESTINE	- MUSCLE - CONNECTIVE - NERVE - EPITHELIAL
CIRCULATORY SYSTEM	HEART, VEINS, ARTERIES	- MUSCLE - CONNECTIVE - NERVE - EPITHELIAL
IMMUNE SYSTEM	THYMUS, SPLEEN	– BONE MARROW
RESPIRATORY SYSTEM	TRACHEA, BRONCHI, LUNGS	– CONNECTIVE – MUSCLE – EPITHELIAL
EXCRETORY SYSTEM	LIVER, KIDNEY, SKIN, LUNGS	- MUSCLE - CONNECTIVE - EPITHELIAL - NERVE
NERVOUS SYSTEM	BRAIN, SPINAL CORD	– NERVE
REPRODUCTIVE SYSTEM	OVARY, CERVIX, UTERUS, VAGINA, TESTES, PENIS	– MUSCLE – CONNECTIVE – NERVOUS – ERECTILE



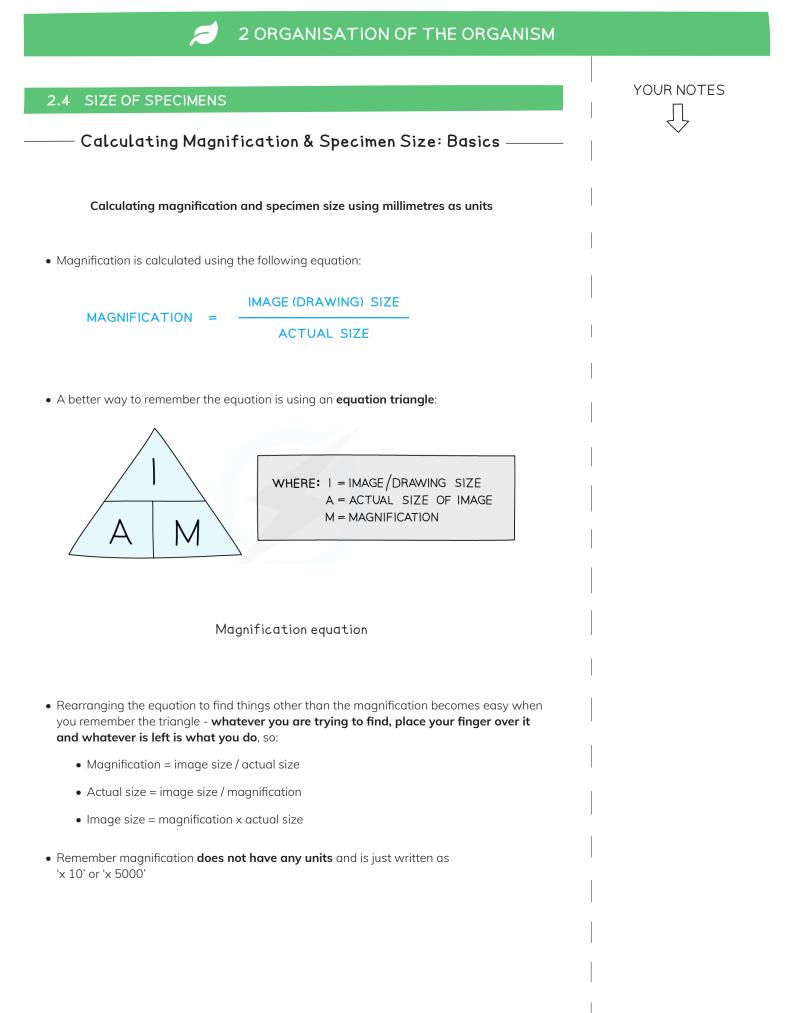
2.3 LEVELS OF ORGANISATION cont...

- Your syllabus states that you should be able to identify the different levels of organisation in drawings, diagrams and images of familiar material
- An example of this is shown in the exam question below

THE DIAGRAMS SHOW A LEAF AND ITS INTERNAL STRUCTURE

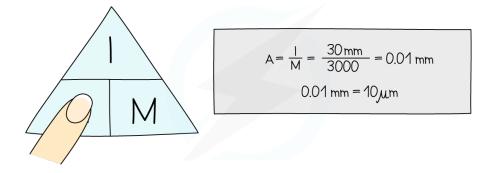
WHAT ARE THE LEVELS OF ORGANISATION OF THE LABELLED STRUCTURES?

	1	2	3
А	CELL	TISSUE	ORGAN SYSTEM
В	ORGAN	CELL	TISSUE
с	ORGAN SYSTEM	TISSUE	CELL
D	TISSUE	CELL	ORGAN

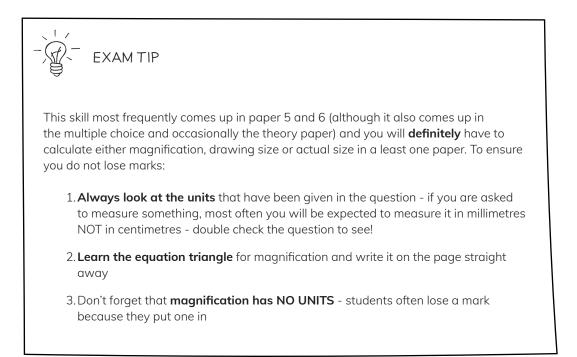

Typical levels of organisation question

EXTENDED EXAM TIP

Your syllabus requires you to identify the different levels of organisation in drawings, diagrams and images of **unfamiliar material**, ie structures you may not have seen before. In order to ensure the best chance of success, make sure you are very clear on the difference between a cell, a tissue and an organ and practise identifying these in past paper questions (they come up most frequently in the **multiple choice paper**).



YOUR NOTES


• Let's look at an example:

An **image** of an animal cell is 30 mm in size and it has been **magnified** by a factor of x 3000. What is the **actual** size of the cell?

To find the **actual** size of the cell:

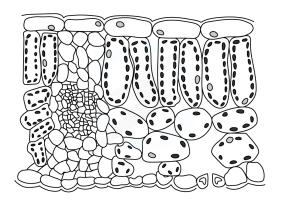
Worked example using the magnification equation

2 ORGANISATION OF THE ORGANISM

2.4 SIZE OF SPECIMENS cont...

EXTENDED ONLY

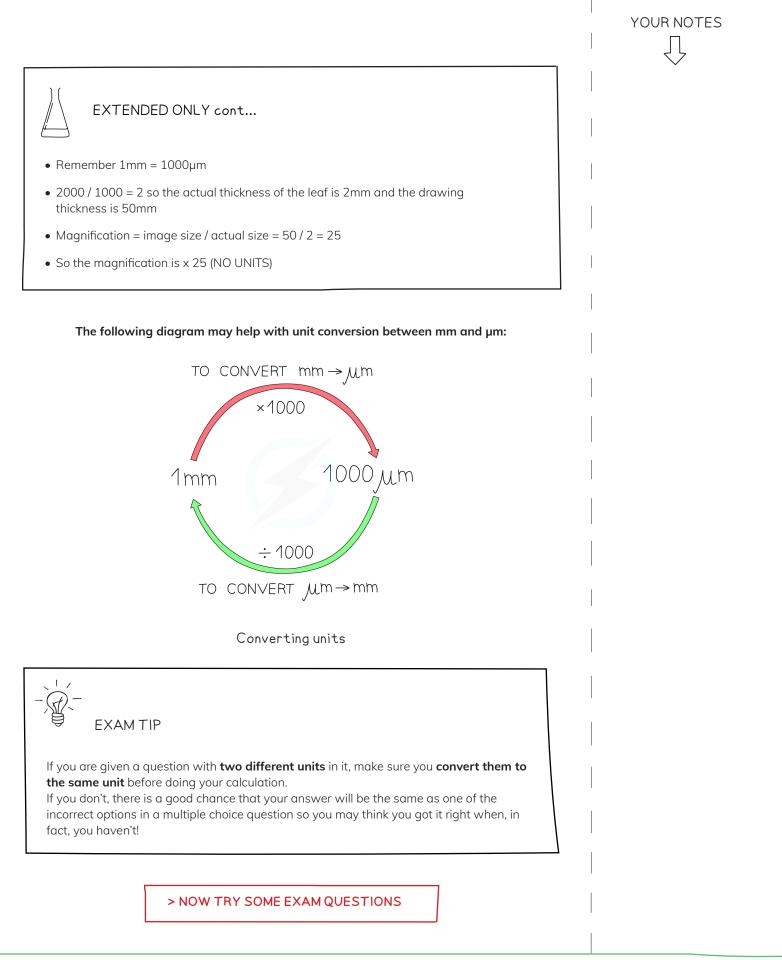
Calculating Magnification & Size of Specimens -


Using millimetres and micrometres as units

• The table below shows how millimetres are related to two other measures of length

UNIT	LENGTH IN mm
1 CENTIMETRE (cm)	10 mm
1 MILLIMETRE (mm)	1 mm
1 MICROMETRE (m)	0.001 mm

- What this basically means is that **1mm = 1000µm** and **1cm = 10,000µm**
- This usually comes up in questions where you have **two different units** and you need to ensure that you **convert them both into the same unit** before proceeding with the calculation
- For example:


THE ACTUAL THICKNESS OF THE LEAF BELOW IS 2000, um, BUT THE IMAGE SIZE OF THE LEAF IN THE DIAGRAM IS 50mm

what is the magnification of the diagram? A x0.025 (B x25) C x100 D x100 000

Example extended magnification question

EXAM QUESTIONS

QUESTION 1

Which row of the table below correctly matches functions to some of the components in a root hair cell?

	cell wall	cell membrane	mitochondria
Α	support	active transport	energy release
в	energy release	active transport	nutrition
с	support	active transport	nutrition
D	active transport	support	energy release

QUESTION 2

Which of the following orders would be correct showing the size of structures from biggest to smallest?

- A chromosome \rightarrow red blood cell \rightarrow stomach \rightarrow gene \rightarrow nucleus
- $\textbf{B} \hspace{0.1 cm} \text{stomach} \rightarrow \text{red blood cell} \rightarrow \text{gene} \rightarrow \text{chromosome}$
- $\textbf{C} \hspace{0.1 cm} \text{stomach} \rightarrow \text{red blood cell} \rightarrow \text{nucleus} \rightarrow \text{chromosome} \rightarrow \text{gene}$
- $\textbf{D}~\text{gene} \rightarrow \text{chromosome} \rightarrow \text{red blood cell} \rightarrow \text{stomach}$

QUESTION 3

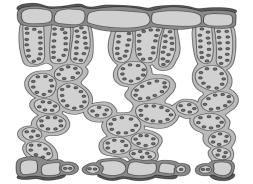
A list of subcellular structures is given below.

- 1 Nucleus
- 2 Ribosomes
- 3 Vacuole
- 4 Chloroplast

A plant cell and an animal cell are observed under a light microscope.

Which of the above structures would always be visible in a plant cell?

A 1, 2 & 4 **B** 1, 3 & 4 **C** 1 & 3 only **D** 1 & 4 only



EXAM QUESTIONS cont...

QUESTION 4

Some of the processes carried out by living organisms are illustrated in the diagram below.

What would be the correct magnification of the image?

- **A** x 5
- **B** x 184
- **C** x 0.184
- **D** x 500

QUESTION 5

Which of the following terms would be correct to describe a leaf, a root and stem?

- A Cell
- **B** Tissue
- **C** Organ
- D Organ system

> CHECK YOUR ANSWERS AT SAVEMYEXAMS.CO.UK

Head to savemyexams.co.uk

for more questions and revision notes